Закон ощущений фехнера в психологии простыми словами с примерами

Алан-э-Дейл       15.05.2023 г.

Оглавление

Типы восприятия [ править ]

Вебер и Фехнер провели исследование различий в интенсивности света и воспринимаемой разнице в весе. Другие смысловые модальности обеспечивают лишь смешанную поддержку либо закона Вебера, либо закона Фехнера.

Восприятие веса править

Вебер обнаружил, что просто заметная разница(JND) между двумя весами был приблизительно пропорционален весам. Таким образом, если вес 105 г можно (только) отличить от веса 100 г, JND (или дифференциальный порог) составляет 5 г. Если масса увеличивается вдвое, дифференциальный порог также удваивается до 10 г, так что 210 г можно отличить от 200 г. В этом примере вес (любой вес), по-видимому, должен увеличиться на 5%, чтобы кто-то мог надежно обнаружить увеличение, и это минимально необходимое частичное увеличение (5/100 от первоначального веса) упоминается как «Фракция Вебера» для определения изменения веса. Другие задачи распознавания, такие как обнаружение изменений яркости или высоты тона (частота чистого тона) или длины линии, отображаемой на экране, могут иметь разные доли Вебера, но все они подчиняются Веберу.Согласно закону, наблюдаемые значения должны изменяться, по крайней мере, на некоторую небольшую, но постоянную долю от текущего значения, чтобы наблюдатели могли надежно обнаружить это изменение.

Фехнер не проводил никаких экспериментов по выяснению того, как ощущаемая тяжесть увеличивается с массой стимула. Вместо этого он предположил, что все JND субъективно равны, и математически утверждал, что это приведет к логарифмической связи между интенсивностью стимула и ощущением. Оба эти предположения подверглись сомнению.
После работы С.С. Стивенса многие исследователи в 1960-х годах пришли к выводу, что
степенной закон является более общим психофизическим принципом, чем логарифмический закон Фехнера. Но в 1963 году Дональд Маккей показал, а в 1978 году Джон Стаддон продемонстрировал с собственными данными Стивенса, что степенной закон является результатом логарифмических процессов ввода и вывода.

Звук править

Закон Вебера не совсем подходит для громкости . Это хорошее приближение для более высоких интенсивностей, но не для более низких амплитуд.

Ограничение закона Вебера в слуховой системе править

Закон Вебера не действует при восприятии более высоких интенсивностей. Дискриминация по интенсивности улучшается при повышении интенсивности. Первая демонстрация этого явления была представлена ​​Риссом в 1928 году в Physical Review. Это отклонение от закона Вебера известно как «близкое к отказу» закона Вебера. Этот термин был введен Макгиллом и Голдбергом в их статье 1968 года в журнале Perception & Psychophysics. Их исследование заключалось в различении интенсивности чистых тонов. Дальнейшие исследования показали, что ближний промах наблюдается и в шумовых стимулах. Jesteadt et al. (1977) продемонстрировали, что близкий промах сохраняется на всех частотах, и что различение интенсивности не является функцией частоты,
и что изменение дискриминации с уровнем может быть представлено одной функцией на всех частотах.

Видение править

Глаз воспринимает яркость приблизительно логарифмически в умеренном диапазоне, а звездная величина измеряется в логарифмической шкале.
Эта шкала величин была изобретена древнегреческим астрономом
Гиппархом примерно в 150 г. до н.э. Он оценил звезды, которые он мог видеть, по их яркости, с 1, представляющей самую яркую, до 6, представляющей самые слабые, хотя теперь шкала была расширена. за этими пределами; увеличение на 5 звездных величин соответствует уменьшению яркости в 100 раз.
Современные исследователи попытались включить такие эффекты восприятия в математические модели зрения.

Ограничения закона Вебера в восприятии визуальной закономерности править

Восприятие паттернов Гласса и зеркальной симметрии в присутствии шума следует закону Вебера в среднем диапазоне отношений регулярности к шуму ( S ), но в обоих внешних диапазонах чувствительность к вариациям непропорционально ниже. Как показали Мэлони, Митчисон и Барлоу (1987) для паттернов Гласса, и как показал ван дер Хельм (2010) для зеркальных симметрий, восприятие этих визуальных закономерностей во всем диапазоне отношений регулярности к шуму следует закону p = g / (2 + 1 / S ) с параметром g, который должен быть оценен с использованием экспериментальных данных.

Основные характеристики слухового анализатора. Механизмы слуховой рецепции.

Характеристики
анализатора:

абсолютный
порог слышимости (зависит от тона, метода
предъявления, субъективных особенностей)
16Гц – 20кГц.

Наилучшая
слышимость при интенсивности от
0,02—0,065 Па

Частота
(500-5000 Гц). Наилучшая слышимость при
частоте 3000 Гц.

Механизмы
слуховой рецепции.
При действии звука основная мембрана
начинает колебаться, наиболее длинные
волоски рецепторных клеток (стереоцилии)
касаются покровной мембраны и несколько
наклоняются. Отклонение волоска на
несколько градусов приводит к натяжению
тончайших вертикальных нитей
(микрофиламентов), связывающих между
собой верхушки соседних волосков данной
клетки. Это натяжение чисто механически
открывает от 1 до 5 ионных каналов в
мембране стереоцилии. Через открытый
канал в волосок начинает течь калиевый
ионный ток. Сила натяжения нити,
необходимая для открывания одного
канала, ничтожна, около 2 • 10-13 ньютонов.
Наиболее слабые из ощущаемых человеком
звуков растягивают вертикальные нити,
связывающие верхушки соседних стереоцилии,
на расстояние, вдвое меньшее, чем диаметр
атома водорода.

Тот
факт, что электрический ответ слухового
рецептора достигает максимума уже через
100—500 мкс (микросекунд), означает, что
ионные каналы мембраны открываются
непосредственно механическим стимулом
без участия вторичных внутриклеточных
посредников. Это отличает механорецепторы
от значительно медленнее работающих
фоторецепторов.

Деполяризация
пресинаптического окончания волосковой
клетки приводит к выходу в синаптическую
щель нейромедиатора (глутамата или
аспартата). Воздействуя на постсинаптическую
мембрану афферентного волокна, медиатор
вызывает генерацию в нем возбуждающего
постсинаптического потенциала и далее
генерацию распространяющихся в нервные
центры импульсов.

Открывания
всего нескольких ионных каналов в
мембране одной стереоцилии явно мало
для возникновения рецепторного потенциала
достаточной величины. Важным механизмом
усиления сенсорного сигнала на рецепторном
уровне слуховой системы является
механическое взаимодействие всех
стереоцилии (около 100) каждой волосковой
клетки. Оказалось, что все стереоцилии
одного рецептора связаны между собой
в пучок тонкими поперечными нитями.
Поэтому, когда сгибаются один или
несколько более длинных волосков, они
тянут за собой все остальные волоски.
В результате этого открываются ионные
каналы всех волосков, обеспечивая
достаточную величину рецепторного
потенциала.

Густав Теодор Фехнер

Фото автора Djordje Cvetkovic: Pexels

Ученый родился в Польше, в 1901 году в семье пастора, однако во взрослом возрасте считал себя атеистом. Поступив в университет в Лейпциге, прослушал курс лекций Э.Г. Вебера, одного из первых практиков психофизиологической науки.

Вдохновленный новым направлением естествознания, Фехнер остался заниматься наукой, а к 1834 году стал профессором физики. Его стремление изучать восприятие человеком мира основывалось на философии Шиллинга, которая утверждала, что есть «светлая» реальность, и она имеет приоритет над материальной истинной.

Для Фехнера даже небесные тела были одушевленными, а, значит, обладающими своим восприятием действительности. Основываясь на трудах своего учителя, Фехнер исследует вопрос: почему изменения реальных физических величин человек воспринимает неверно. В ходе этого исследования и родился известнейший постулат Фехнера.

Закон специфической энергии

То обстоятельство, что органы чувств при всяком возбуждении отвечают одним и тем же ощущениям , объясняется их специфической энергией, т.е. согласно этому термину , органы чувств на всякие возбуждения отвечают тем или другим  ощущением , благодаря тому, что им присуща та или другая  специфическая энергия.

Но как объяснить эти особенности  каждого органа чувств?

Здесь возможны три объяснения. Или можно думать, во-первых, что это зависит от особенностей самих нервов, т.е. можно думать, например, что зрительный нерв по своей природе совершенно отличается от слухового нерва, и вследствие этого, ощущения, получающиеся благодаря его возбуждению, совершенно отличается от ощущений, порождаемых возбуждением слухового нерва.

Можно предполагать, во-вторых, что различия между органами чувств происходит вследствие различия концевых образований тех или других нервов. Например концевые образования слухового нерва (волокна основной перегородки) совершенно отличаются от палочек и колбочек, составляющих  окончание зрительного нерва. Вседствии этого и функции их совершенно различны. По этой теории, если бы мы, например, палочки и колбочки зрительного нерва перенесли на место основной перегородки слухового нерва, то в таком случае мы при помощи слухового нерва могли бы ощущать цвета.

Можно сделать предположение, что различие между органами чувств находится в зависимости от тех нервных центров, с которыми те или другие нервы связаны в головном мозгу.

Но нужно думать, что ни одно из этих предположений  не дает удовлетворительного ответа на поставленный вопрос. Различие между органами чувств не может быть объяснено различием только нервов , потому что исследования показывают, что нервы сами по себе ни в своем строении, ни в физических и химических свойствах  не обнаруживают никакого различия. Различия между органами чувств не может быть объяснено также различием только концевых органов, потому что, например, лица, потерявшие зрение , сохраняются долгое время представление о цветах.  У них ощущение цвета есть, а концевых аппаратов  сетчатки нет. Следовательно, ощущение цвета у них находится в зависимости от каких-то центральных аппаратов. Из этого можно сделать вывод, что различие между функциями органов чувств обуславливается как различиями концевых аппаратов, так и центральных.

Закон Фехнера

Если мы возьмем таблицу логарифмов, то увидим, что в ней имеется два столбца чисел: в одном обыкновенные, а в другом-логарифмы

Кроме того, если мы обратим внимание на то, как растут логарифмы, то увидим, что логарифмы возрастают медленнее, чем числа. Если, например, в одном столбце стоит 1, то в другом -0; для числа 10 логарифм равняется единице,для 100 равняется 2 и т

д. Следовательно, здесь мы видим, что в то время, как числа растут определенным образом , логарифмы, соответствующие им, также растут, но совершенно своеобразно. Если мы рассмотрим ближе рост логарифмов, то увидим, что между их ростом и ростом раздражений есть известная аналогия. Логарифмами 0, 1,2,3, и пр. соответствуют числа 1, 10, 100, 1000 и т. д. рассмотрим, в каком отношении здесь находится приращение к первоначальной величине. Разность между 1 и 10 равна 9, между 100 и 10=90, между 1000 и 100=900. Следовательно, отношения прироста к первоначальной величине равны 9/1, 90/10, 900/100=9. Эти отношения тождественны, все равны 9. Следовательно, отношение между предыдущим и последующим  числом постоянно равно числу 9.

То же самое отношение, какое мы здесь имеем между  ростом чисел и соответствующими им логарифмами, мы имели и в отношении между ростом ощущений и раздражений. Мы видели, что, когда ощущения возрастают на одинаковую величину, то раздражения возрастают таким образом, что приращение их сохраняет всегда одинаковое отношение к данной величине раздражения. Точно таким же образом логарифмы увеличиваются на равные величины, когда числа возрастают таким образом, что приращение их сохраняет всегда одинаковое отношение к данной величине. Итак, можно сказать, что ощущения возрастают, как логарифмы, в то время как раздражения увеличиваются , как числа; или, еще короче, так как каждая величина раздражения может быть выражена определенным числом-ощущение равняется логарифму раздражения ( закон Фехнера ).

Можно также сказать, что ощущения растут в арифметической прогрессии в то время, как раздражения растут в геометрической. Мы видели, что, если к одному грамму прибавить треть грамма, то получится едва заметное ощущение тяжести. Чтобы получить такое же едва заметное ощущение при двух граммах, нужно прибавить две трети грамма. Это едва заметное приращение ощущения в обоих случаях считается тождественным.

Начнем наши опыты с двух граммов. Будем писать с одной стороны раздражения, а с другой-едва заметные ощущения. Если первое раздражение равняется 1, то второе раздражение должно равняться 1+1/3, то есть 4/3 первого раздражения. Следовательно, каждое предыдущее раздражение должно равняться 4/3 предыдущего, чтобы вызвать едва заметное ощущение.

Следовательно, у нас получается ряд ощущений, растущий в геометрической прогрессии в  то время, как раздражение  растет в геометрической.

Статьи по психологии: 

Законные приложения

Зрение

Видимая величина небесного тела, блок , относящийся к восприятию светимости человеческого глаза, следует логарифмическому закон: разница 5 звездных величины соответствуют соотношению 100 в световой интенсивности (мощностях на единицу площади).

Слух

Децибел , единица , относящаяся к восприятию акустической мощности человеческим ухом, следует логарифмическому закону: разница в 10 дБ соответствует в соотношении 10 в акустической интенсивности (мощности на единицу площади).

Критика Анри Бергсона

Анри Бергсон , придерживаясь философской точки зрения, подверг сомнению этот способ понимания психологии, который, по его мнению, является проекцией времени на пространство и игнорирует длительность , концепцию, которую он выдвигает против этого закона в « Очерке о непосредственных данных сознания». .

Закон Вебера

Немецкий анатом и физиолог Эрнст Генрих Вебер (1795–1878) исследовал, среди прочего, взаимосвязь между сенсорными восприятиями и стимулами различного физического качества и количества, которые вызывают их, в различных экспериментах (таких как эксперимент Вебера ). Он также изучил вопрос о том, насколько стимул должен быть усилен, чтобы восприниматься как более сильный. Вебер обнаружил, что минимальная необходимая для этого разница — также известная как предел разницы ( DL ) — значительно ниже для низких интенсивностей стимула, чем для высоких интенсивностей. В 1834 году он заметил, что для стимулов одного и того же типа эти разностные пороги почти одинаковы, если они даны как пропорция по отношению к соответствующей интенсивности стимулов. Фехнер назвал это соотношение тем, что просто ощутимая разница  ΔR со стимулом сравнения  R имеет определенное постоянное отношение  k , сформулированное математически:

(1a)  Закон Вебера.kзнак равноΔР.Р.{\ Displaystyle к = {\ гидроразрыва {\ Delta R} {R}}}    

Переработанный, это означает , что разница порог .DELTA.R в пропорционально связан с интенсивностью стимула: .DELTA.R = K · R . При средней силе стимула этот закон приблизительно справедлив для различных сенсорных модальностей и — качеств .

Вебер фактор & Dgr ; r / R представляет собой коэффициент пропорциональности K в качестве спецификации отношения безразмерного ; это не то же самое с разными раздражителями или разными органами чувств .

Примеры:

  • Распознается относительная разница в весе примерно 2% объекта, удерживаемого в покоящейся руке . Увеличение веса объекта на 50 г отмечается только тогда, когда вес увеличился на 1 грамм до 51 г. Соответственно, вес 500 г должен увеличиться на 10 г, чтобы казаться тяжелее. Здесь порог различия в интенсивности стимула ведет себя как ΔR / R = 1/50 = 10/500 = 0,02 = 2%.
  • Что касается осязания , требуемый порог разницы  ΔR, согласно экспериментам Вебера, составляет около 3% от стимула R, оказываемого на кожу как давлениеΔR / R ≈ 0,03.
  • При просмотре яркости отношение ΔR / R является самым низким и составляет около 0,01–0,02 при средней яркости окружающей среды, тогда порог разницы составляет от 1 до 2% от интенсивности света ; с уменьшением яркости коэффициент увеличивается до значения более 0,1 в сумерках; при очень слабых стимулах вблизи абсолютного порога он даже выше.
  • В случае вкуса , концентрация должна увеличиться на 10-20%, чтобы он воспринимался как более сильный.

Эксперименты

Исследования Фехнера очень легко проверить даже в домашних условиях, для этого нужен набор гирек. Человеку на вытянутую руку кладутся гирьки, глаза человека завязаны, так что понять, что вес изменился, он может только основываясь на ощущениях.

Сначала можно положить на руку гирьку 50г и затем добавлять постепенно вес, пока испытуемые не скажет, что вес изменился. Разницу между первым и вторым весом записать.

Вторая часть эксперимента: положить человек на руку сначала гирьку в 300г и постепенно добавлять еще вес. Во втором случае необходимый для появления ощущения изменения вес будет в несколько раз больше. Согласно закону Фехнера, разница будет в 6 раз.

Тот же фокус повторяется при восприятии яркости цвета на карточке. Увеличение яркости слабого цвета человек заметит быстрее, чем яркого. Для этого эксперимента существуют и компьютерные программы, где в момент изменения цвета человек должен нажать на кнопку, а время считает система.


Giphy

Гость форума
От: admin

Эта тема закрыта для публикации ответов.